Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Res ; 252(Pt 2): 118896, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38642644

RESUMEN

Green pesticides, derived from natural sources, have gained wider attention as an alternative to synthetic pesticides for managing polyphagous pests, such as Spodoptera litura. In this study, the methanolic flower extract of Nyctanthes arbor-tristis (Mx-Na-t) was subjected to chemical screening, and 3-hydroxy-1,2-dimethyl-4(1H)-pyridone (3H-dp) and tyrosol (Ty-ol) were identified as the major derivatives. The toxic effects of Mx-Na-t (500 ppm) were highest in third-instar S. litura larvae (96.4%), while those of 3H-dp and Ty-ol (5 ppm) were highest in second-instar larvae (76.5% and 81.4%, respectively). The growth and development of S. litura larvae and pupae were significantly reduced by all three treatments. Fecundity rates were also reduced by all treatments [from 1020 eggs (control) to 540 eggs by Mx-Na-t treatment, 741 eggs by 3H-dp treatment, and 721 eggs by Ty-ol treatment]. The extract and its active constituents decreased adult emergence and slowed total larval development in a dose-dependent manner. A decrease was noted in the major gut enzymes of young S. litura larvae exposed to Mx-Na-t, 3H-dp, and Ty-ol. Moreover, midgut tissues of fourth-instar larvae were severely damaged by Mx-Na-t (250 ppm), 3H-dp (2.5 ppm), and Ty-ol (2.5 ppm); the treatments induced structural damage to the epithelial cells and gut lumen. The earthworm Eisenia fetida was used to assess nontarget toxicity. Compared with cypermethrin, the phytochemicals exhibited minimal effects on the earthworm's detoxifying enzymes superoxide dismutase and catalase after 14 days of treatment. Moreover, in silico predictions using BeeTox and ProTox-II indicated little or no toxicity of 3H-dp and Ty-ol toward honey bees and other nontarget species.

2.
Environ Sci Pollut Res Int ; 31(14): 21610-21631, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38393552

RESUMEN

Current vector control strategies based on synthetic chemicals are not eco-friendly against non-target organisms; hence, alternative approaches are highly required. Commercially purchased oil of Mentha spicata (Spearmint) and Eucalyptus citriodora (Citriodora) were examined against the medical pest Cx. quinquefasciatus (Say) and their non-toxicity on the aquatic species was evaluated. Chemical screening with gas chromatography coupled with mass spectrometry (GC-MS) analysis revealed a total of 14 and 11 compounds in Citriodora and Spearmint oils, respectively, with the highest peak (%) at carvone (70.44%) and isopulegol (30.4%). The larvicidal activity on the fourth instar larvae of Cx. quinquefasciatus showed dose-dependent mortality and significance at a 100 ppm concentration 48 h post-treatment with Citriodora (76.4%, P ≤ 0.001) and Spearmint (100%, P ≤ 0.001). Additionally, the photomicrograph of the fourth instar larvae revealed significant physical abnormalities in the head and midgut tissues post-exposure to Spearmint and Citriodora oils. Moreover, the histological assay revealed severe damage in the epithelial cells and gut lumen 2 to 24 h post-treatment. The repellency percentage of adult Culex mosquitoes was prominent across both oils at 150 ppm 210 min post-exposure. Non-target toxicity on the aquatic predator showed both essential oils (Spearmint oil (17.2%) and Citriodora oil (15.2%)) are safer at the maximum treatment (200 ppm) compared to temephos (75.4% at 1 ppm). The in silico screening of phyto-compounds derived by both essential oils with BeeTox (online server) showed no contact toxicity to the honey bee Apis mellifera. Overall, the present research revealed that Spearmint and Citriodora essential oils and their active phyto-compounds were toxic to Cx. quinquefasciatus and harmless to the aquatic predator and honey bee.


Asunto(s)
Culex , Eucalyptus , Insecticidas , Mentha spicata , Aceites Volátiles , Abejas , Animales , Mentha spicata/química , Insecticidas/química , Mosquitos Vectores , Aceites Volátiles/farmacología , Aceites Volátiles/química , Aceite de Eucalipto , Larva
3.
Environ Res ; 247: 118179, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38218516

RESUMEN

Globally, soil acidification is a serious environmental issue that reduces commercial agricultural production. Rice is subjected to nutritional stress due to acidic soil, which is a major impediment to rice production. Since acid soil threatens rice plants with soil compaction, nutrient loss, and plant stress-induced oxidative cell damage that results in affecting the photosynthetic system, restricting the availability of water, and reducing overall plant growth and productivity. Since contemporary soil acidification management strategies provide mediocre results, the use of Sargassum wightii seaweed-based biostimulants (BS) and soil amendments is sought as an environmentally friendly alternative strategy, and therefore its potential isevaluated in this study. BS was able to mediate soil quality by improving soil pH and structure along with facilitating nitrogen phytoavailability. BS also increased the activity of the antioxidant enzyme system, superoxide dismutase ((48%), peroxidase (76.6%), and ascorbate peroxidase (63.5%), aggregating the monaldehyde-mediating accumulation of osmoprotective proline in roots, that was evident from rapid initiation of root hair growth in treated seedlings. BS was also able to physiologically modulate photosynthetic activities and chlorophyll production (24.31%) in leaves, maintaining the efficiency of plant water use by regulating the stomatal conductance (0.91 mol/m/s) and the transpiration rate (13.2 mM/m/s). The BS compounds were also successful in facilitating nitrogen uptake resulting in improved plant growth (59%), tiller-panicle number, and yield (52.57%), demonstrating a resourceful nitrogen use efficiency (71.96%) previously affected by stress induced by acid soil. Therefore, the study affirms the competent potential of S. wightii-based soil amendment to be applied not only to improve soil quality, but also to increase plant production and yield.


Asunto(s)
Oryza , Suelo , Fotosíntesis/fisiología , Antioxidantes/metabolismo , Nitrógeno , Verduras , Agua
4.
Methods Mol Biol ; 2753: 331-338, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38285348

RESUMEN

Aqueous extracts from green seaweeds Chaetomorpha antennina and Ulva flexuosa (SWE) had considerable impacts on the growth and development of tomato plants; it was evident that SWE could be widely applied as agricultural biostimulants as one among a promising strategy of sustainable agriculture. With a higher probability of SWE to replace synthetic agrochemicals, we describe a procedure here to perform an ecotoxicological assessment of liquid SWE on the earthworm, Eudrilus eugeniae Kinb with respect to their growth, survivability, and reproduction.


Asunto(s)
Chlorophyta , Oligoquetos , Algas Marinas , Animales , Verduras , Agricultura
5.
Methods Mol Biol ; 2753: 339-350, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38285349

RESUMEN

Fundamental techniques for determining the toxicity of pesticides to soil organisms are ecotoxicological laboratory assays. Due to their expanding potential and rise in use as a sustainable agricultural strategy toward the biological pest management, we quantified the effects of the compounds from the active fraction of the green seaweed Chaetomorpha antennina (Chlorophyceae), which is found in abundance in coastal areas of India that was used for the control of the polyphagous lepidopteran Spodoptera litura. Since the seaweed compounds were able to affect the morphology, physiology, and biochemical aspects of the pest, it is essential to perform an ecotoxicological assessment against the bioindicator organism Eudrilus eugeniae Kinb. This comprehensive assessment includes a morphological assay as well as the possible effects of the compounds on the earthworm's physiological and biochemical aspects such as acetylcholinesterase, catalase, and superoxide dismutase enzyme activities. The benignity of the compounds should also be confirmed by analyzing the gut histology of the earthworms treated with the compounds.


Asunto(s)
Chlorophyta , Oligoquetos , Algas Marinas , Animales , Acetilcolinesterasa , Agentes de Control Biológico , Ecotoxicología
6.
Environ Pollut ; 343: 123236, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38160776

RESUMEN

The increasing use of cellulose-based materials (CBMs) has provided beneficial applications in different sectors. However, its release into environments may represent an ecological risk, therefore demanding that ecotoxicological studies be conducted to understand the risks (current and future) of CBM pollution. Thus, we evaluated the possible effects of microcrystalline cellulose (CMs) in Physalaemus cuvieri tadpoles. After seven days of exposure to CMs (at 58.29 and 100 mg/L), the animals were subjected to behavioral evaluation, and different biomarkers (biometric and biochemical) were evaluated. Although our data do not point to a neurotoxic effect of CMs (inferred by the absence of behavioral changes and changes in AChE and BChE activity), animals exposed to CMs showed differences in body condition. Furthermore, we noticed an increase in the frequency of erythrocyte nuclear abnormalities and DNA damage, which were correlated with the ingestion of CMs. We noticed that the antioxidant activity of tadpoles exposed to CMs (inferred by SOD, CAT, and DPPH radical scavenging activity) was insufficient to control the increase in ROS and MDA production. Furthermore, exposure to CMs induced a predominant Th2-specific immune response, marked by suppressed IFN-γ and increased IL-10 levels, with a consequent reduction in NO levels. Principal component analysis and IBRv-2 indicate, in general, a primarily more toxic response to animals exposed to the highest CM concentration. Therefore, our study evidence that CMs affect the health of P. cuvieri tadpoles and sheds light on the threat these materials pose to amphibians.


Asunto(s)
Anuros , Contaminantes Químicos del Agua , Animales , Larva , Anuros/fisiología , Antioxidantes/farmacología , Contaminantes Químicos del Agua/toxicidad
7.
Sci Rep ; 13(1): 13884, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37620354

RESUMEN

Improving agricultural products by the stimulation of plant growth and defense mechanisms by priming with plant extracts is needed to attain sustainability in agriculture. This study focused to consider the possible improvement in Vigna radiata L. seed germination rate, plant growth, and protection against the natural stress by increasing the defense mechanisms through the incorporation of Sesamum indicum phytochemical compounds with pre-sowing seed treatment technologies. The gas chromatography coupled with mass spectroscopy (GC-MS) analysis revealed that the methanol extract of S. indicum leaf extract contained eight major bioactive compounds, namely, 2-ethylacridine (8.24%), tert-butyl (5-isopropyl-2-methylphenoxy) dimethylsilane (13.25%), tris(tert-butyldimethylsilyloxy) arsane (10.66%), 1,1,1,3,5,5,5-heptamethyltrisiloxane (18.50%), acetamide, N-[4-(trimethylsilyl) phenyl (19.97%), 3,3-diisopropoxy-1,1,1,5,5,5-hexamethyltrisiloxane (6.78%), silicic acid, diethyl bis(trimethylsilyl) ester (17.71%) and cylotrisiloxane, hexamethyl-(4.89%). The V. radiata seeds were treated with sesame leaf extract seeds at concentrations 0, 10, 25, 50, and 100 mg/L. Sesame leaf extract at 50 and 100 mg/L concentrations was effective in increasing the germination percentage and the fresh and dry weights of roots and shoots. The increased peroxidase activity was noticed after treatment with S. indicum extract. In addition, disease percentage (< 60%) of both fungal pathogens (Rhizoctonia and Macrophomina) was significantly reduced in V. radiata plants treated with 100 mg/L of sesame leaf extract. These results revealed that physiochemical components present in S. indicum mature leaf extract significantly enhanced growth and defense mechanism in green gram plants.


Asunto(s)
Ascomicetos , Sesamum , Vigna , Rhizoctonia , Agricultura , Cortodoxona , Mecanismos de Defensa
8.
Sci Total Environ ; 901: 165952, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-37536599

RESUMEN

The growing use of synthetic chemical compounds/substances in vector control of mosquitoes, associated with their adverse effects on the environment and non-target organisms, has demanded the development of eco-friendly alternatives. In this context, this study aimed to evaluate the larvicidal action of different cellulose microcrystalline (CMs) concentrations and investigate their toxicity mechanisms in Culex quinquefasciatus fourth instar larvae as a model species. Probit analysis revealed that the median lethal concentrations (LC50) for 24 h and 36 h exposure were 100 and 58.29 mg/L, respectively. We also showed that such concentrations induced a redox imbalance in the larvae, marked by an increase in the production of reactive oxygen species (ROS) and thiobarbituric acid reactive substances (TBARS), as well as a reduction in the activity of superoxide dismutase (SOD) and catalase (CAT). Furthermore, different alterations in the external morphology of the larvae were associated with the ingestion of CMs. On the other hand, exposure of adult zebrafish (Danio rerio) to LC5024h and LC5036h for seven days did not induce any behavioral changes or alterations mutagenic, genotoxic, biochemical, or in the production of cytokines IFN-γ and IL-10. Thus, taken together, our study demonstrates for the first time that the use of CMs can constitute a promising strategy in the control of C. quinquefasciatus larvae, combining insecticidal efficiency with an "eco-friendly" approach in the fight against an important mosquito vector of several human diseases.

9.
PLoS One ; 18(5): e0278616, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37130086

RESUMEN

The antifungal effects of Citrullus colocynthis extract (Hexane, chloroform, methanol, and water) were tested in vitro on Fusarium oxysporum f. sp. lycopersici (Sacc.) W. C. Snyder & H. N. Hans (FOL), the causal agent of Fusarium wilt. Of these, methanol and water extract at 10% showed the highest inhibition of mycelial growth of FOL by 12.32 and 23.61 mm respectively. The antifungal compounds were identified through Fourier transform infrared (FT-IR) spectroscopy and gas chromatography-mass spectroscopy (GC-MS). The methanol extract was compatible with the biocontrol agent Trichoderma viride. The antagonistic fungi were mass-cultured under laboratory conditions using sorghum seeds. Both T. viride and C. colocynthis methanol extract was also tested alone and together against FOL under both in vitro and in vivo conditions. The combination of T. viride and C. colocynthis showed the highest percentage of antifungal activity (82.92%) against FOL under in vitro conditions. This study revealed that induced systemic resistance (ISR) in enhancing the disease resistance in tomato plants against Fusarium wilt disease. The combined treatment of T. viride and C. colocynthis significantly reduced the disease incidence and index by 21.92 and 27.02% in greenhouse conditions, respectively. Further, the induction of defense enzymes, such as peroxidase (PO), polyphenol oxidase (PPO), ß-1,3-glucanase, and chitinase were studied. The accumulation of defense enzyme was greater in plants treated with a combination of T. viride and C. colocynthis compared to the control. Reduction of wilt disease in tomato plants due to the involvement of defense-related enzymes is presumed through this experiment.


Asunto(s)
Citrullus colocynthis , Fusarium , Solanum lycopersicum , Antifúngicos/farmacología , Metanol , Espectroscopía Infrarroja por Transformada de Fourier , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología
10.
Molecules ; 28(5)2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36903635

RESUMEN

Mosquitoes are the potential vectors of several viral diseases such as filariasis, malaria, dengue, yellow fever, Zika fever and encephalitis in humans as well as other species. Dengue, the most common mosquito-borne disease in humans caused by the dengue virus is transmitted by the vector Ae. aegypti. Fever, chills, nausea and neurological disorders are the frequent symptoms of Zika and dengue. Thanks to various anthropogenic activities such as deforestation, industrialized farming and poor drainage facilities there has been a significant rise in mosquitoes and vector-borne diseases. Control measures such as the destruction of mosquito breeding places, a reduction in global warming, as well as the use of natural and chemical repellents, mainly DEET, picaridin, temephos and IR-3535 have proven to be effective in many instances. Although potent, these chemicals cause swelling, rashes, and eye irritation in adults and children, and are also toxic to the skin and nervous system. Due to their shorter protection period and harmful nature towards non-target organisms, the use of chemical repellents is greatly reduced, and more research and development is taking place in the field of plant-derived repellents, which are found to be selective, biodegradable and harmless to non-target species. Many tribal and rural communities across the world have been using plant-based extracts since ancient times for various traditional and medical purposes, and to ward off mosquitoes and various other insects. In this regard, new species of plants are being identified through ethnobotanical surveys and tested for their repellency against Ae. aegypti. This review aims to provide insight into many such plant extracts, essential oils and their metabolites, which have been tested for their mosquitocidal activity against different life cycle forms of Ae. Aegypti, as well as for their efficacy in controlling mosquitoes.


Asunto(s)
Aedes , Dengue , Repelentes de Insectos , Insecticidas , Infección por el Virus Zika , Virus Zika , Adulto , Animales , Niño , Humanos , Mosquitos Vectores , Insectos , Repelentes de Insectos/farmacología , Extractos Vegetales/farmacología , Insecticidas/farmacología , Larva
11.
Sci Total Environ ; 858(Pt 1): 159512, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36265619

RESUMEN

The resistance to insecticides among insects, including mosquitoes and agricultural pests, and the impact of these compounds' environmental risks and health issues have motivated the proposition of eco-friendly alternatives. Thus, we aimed to explore the potential use of Desmostachya bipinnata for the biosynthesis of TiO2NPs and evaluate their larvicidal and pupicidal activity of target (Aedes aegypti and Spodoptera litura) and acute toxicity in non-target organisms (Toxorhynchites splendens and Eisenia fetida), at distinct concentrations, after 24 h of exposure. The characterization of the biosynthesized TiO2NPs was carried out by FT-IR, XRD, SEM, and EDX analysis. Under the UV-vis spectrum analysis, a sharp peak was recorded at 200 to 800 nm, which indicated the production of TiO2NPs by the plant extract. The SEM analysis revealed that the synthesized TiO2NPs were spherical with a diameter of 36.4 nm and were detected in the XRD spectrum analysis related to the TiO2NPs. The highest percentage of mortality recorded at 900 µg/mL was 96 % and 94 % in the 2nd instar of A. aegypti and S. litura larvae, respectively, and exhibited the LC50 and LC90 values 5 of 458.79 and 531.01 µg/mL, respectively. The biosynthesized TiO2NPs showed concentration-dependent increased pupal lethality for both A. aegypti and S. litura. We also observed increased detoxification enzyme activity (α esterase, ß esterase, and glutathione-S-transferase) of A. aegypti and S. litura exposed to different concentrations of biosynthesized TiO2NPs as histopathological changes in the midgut region of these animals. On the other hand, the mortality rate of non-target organisms (T. splendens and E. fetida) was lower when exposed to TiO2NPs, compared to the high lethality induced by synthetic pesticides (cypermethrin and monocrotophos for E. fetida; and cypermethrin and temphos for T. splendens). Thus, our study provides pioneering evidence on the potential use of D. bipinnata-mediated TiO2NPs for controlling mosquito vectors and agricultural pest management.


Asunto(s)
Aedes , Insecticidas , Nanopartículas del Metal , Animales , Spodoptera , Plata/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Nanopartículas del Metal/toxicidad , Hojas de la Planta , Insecticidas/toxicidad , Larva , Extractos Vegetales/farmacología , Esterasas
12.
Front Physiol ; 13: 900570, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36439259

RESUMEN

Spodoptera litura (Fabricius) is an agriculturally significant polyphagous insect pest that has evolved a high level of resistance to conventional insecticides. A dietary assay was used in this work to assess the resilience of field populations of S. litura to λ-cyhalothrin. Analysis of the function and expression of the cytochrome P450 gene was used to test the sensitivity of S. litura larvae to sub-lethal concentrations of the insecticidal plant chemical Precocene 1, both by itself and in combination with λ-cyhalothrin. The activity of esterase enzymes (α and ß) was found to decrease 48 h post treatment with Precocene 1. The activity of GST enzyme and cytochrome P450 increased with Precocene 1 treatment post 48 h, however. Expression studies revealed the modulation by Precocene 1 of cytochrome P450 genes, CYP4M16, CYP4M15, CYP4S8V4, CYP4G31, and CYP4L10. While CYP4M16 expression was stimulated the most by the synergistic Precocene 1 + λ-cyhalothrin treatment, expression of CYP4G31 was the most down-regulated by Precocene 1 exposure. Hence, it is evident that λ-cyhalothrin-resistant pest populations are still sensitive to Precocene 1 at a sublethal concentration that is nevertheless capable of hindering their development. Precocene 1 can therefore be considered a potent candidate for the effective management of insecticide-resilient S. litura.

13.
Molecules ; 27(22)2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36431952

RESUMEN

Green synthesis of silver nanoparticles (AgNPs) has gained greater interest among chemists and researchers in this current scenario. The present research investigates the larvicidal and anti-proliferation activity of AgNPs derived from Knoxia sumatrensis aqueous leaf extract (K. sumatrensis-ALE) as a potential capping and reducing candidate. The synthesized AgNPs were characterized through-UV-spectra absorption peak at 425 nm. The XRD and FT-IR studied displayed the crystalline nature and presence of functional groups in prepared samples. FE-SEM showed the hexagonal shape of NPs with the size of 7.73 to 32.84 nm. The synthesized AgNPs displayed superior antioxidant and anti-proliferative activity (IC50 53.29 µg/mL) of breast cancer cell line (MCF-7). Additionally, larvicidal activity against mosquito vector Culex quinquefasciatus larvae delivered (LC50-0.40, mg/L, and LC90-15.83) significant mortality rate post treatment with synthesized AgNPs. Overall, the present research illustrates that the synthesized AgNPs have high biological potential and present a perfect contender in the pharmacological and mosquitocidal arena.


Asunto(s)
Insecticidas , Nanopartículas del Metal , Rubiaceae , Animales , Plata/química , Nanopartículas del Metal/química , Espectroscopía Infrarroja por Transformada de Fourier , Insecticidas/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Rubiaceae/metabolismo
14.
Environ Res ; 213: 113711, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35728640

RESUMEN

The use of vegetal species for gold nanoparticles (AuNPs) biosynthesis can constitute an alternative to replacing the extensive use of several hazardous chemicals commonly used during NPs synthesis and, therefore, can reduce biological impacts induced by the release of these products into the natural environment. However, the "green nanoparticles" and/or "eco-friendly nanoparticles" label does not ensure that biosynthesized NPs are harmless to non-target organisms. Thus, we aimed to synthesize AuNPs from seaweed Gracilaria crassa aqueous extract through an eco-friendly, fast, one-pot synthetic route. The formation of spherical, stable, polycrystalline NPs with a diameter of 32.0 nm ± 4.0 nm (mean ±SEM) was demonstrated by UV-vis spectroscopy, field emission scanning electron microscopy, and high-resolution transmission electron microscopy, energy-dispersive X-ray and X-ray diffraction measurement, and Fourier-transform infrared spectroscopy analysis. In addition, different phytocomponents were identified in the biosynthesized AuNPs, using Gas Chromatography-Mass Spectrometry (GC-MS). However, both G. crassa aqueous extract and the biosynthesized AuNPs showed high ecotoxicity in Anopheles stephensi larvae exposed to different concentrations. Therefore, our study supports the potential of seaweed G. crassa as a raw material source for AuNPs biosynthesis while also shedding light on its ecotoxicological potential, which necessitates consideration of its risk to aquatic biota.


Asunto(s)
Gracilaria , Nanopartículas del Metal , Oro/química , Oro/toxicidad , Nanopartículas del Metal/química , Nanopartículas del Metal/toxicidad , Extractos Vegetales/toxicidad , Hojas de la Planta , Espectroscopía Infrarroja por Transformada de Fourier
15.
Environ Sci Pollut Res Int ; 29(47): 71326-71337, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35595904

RESUMEN

Aedes aegypti is the main vector of yellow fever, chikungunya, Zika, and dengue worldwide and is managed by using chemical insecticides. Though effective, their indiscriminate use brings in associated problems on safety to non-target and the environment. This supports the use of plant-based essential oil (EO) formulations as they are safe to use with limited effect on non-target organisms. Quick volatility and degradation of EO are a hurdle in its use; the present study attempts to develop nanoemulsions (NE) of Trachyspermum ammi EO and its constituent thymol using Tween 80 as surfactant by ultrasonication method. The NE of EO had droplet size ranging from 65 ± 0.7 to 83 ± 0.09 nm and a poly dispersity index (PDI) value of 0.18 ± 0.003 to 0.20 ± 0.07 from 1 to 60 days of storage. The NE of thymol showed a droplet size ranging from 167 ± 1 to 230 ± 1 nm and PDI value of 0.30 ± 0.03 to 0.40 ± 0.008 from 1 to 60 days of storage. The droplet shape of both NEs appeared spherical under a transmission electron microscope (TEM). The larvicidal effect of NEs of EO and thymol was better than BEs (Bulk emulsion) of EO and thymol against Ae. aegypti. Among the NEs, thymol (LC50 34.89 ppm) had better larvicidal action than EO (LC50 46.73 ppm). Exposure to NEs of EO and thymol causes the shrinkage of the larval cuticle and inhibited the acetylcholinesterase (AChE) activity in Ae. aegypti. Our findings show the enhanced effect of NEs over BEs which facilitate its use as an alternative control measure for Ae. aegypti.


Asunto(s)
Aedes , Ammi , Apiaceae , Insecticidas , Aceites Volátiles , Virus Zika , Acetilcolinesterasa , Ácidos Alcanesulfónicos , Animales , Emulsiones/farmacología , Insecticidas/química , Larva , Mosquitos Vectores , Aceites Volátiles/química , Aceites Volátiles/farmacología , Aceites de Plantas/farmacología , Polisorbatos/farmacología , Tensoactivos/farmacología , Timol/farmacología
16.
Toxicol Rep ; 9: 713-719, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35433272

RESUMEN

Ascosphaera apis is a fungal pathogen, which causes chalkbrood disease in bees and is threatening beekeeping worldwide. The demand for organic honey for export has lately heightened hence the biological control is the option. This study aimed at the in vitro evaluation of the potency of plant extracts against chalkbrood disease for the possibility of being employed as a biological control strategy. The results showed that the combination of plant extracts from cinnamon with spearmint, cinnamon with lemongrass, cinnamon with geranium, and cinnamon with palmarosa at a concentration of 25% and 12.5% inhibited mycelial growth of A. apis by 100%. This demonstrated the potentiality of combining different plant extracts in controlling this disease. In addition, oregano caused inhibition of up to 100% singly. Conclusively, cinnamon in combination with several extracts has a great potential in curbing this disease while oregano offers an amazing remedy and hence the best formulations should be generated for the beekeeper to utilize.

17.
J Fungi (Basel) ; 8(1)2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-35050008

RESUMEN

A field survey was done in teak (Tectona grandis F.) forests in South India to explore the entomopathogenic effect of Metarhizium anisopliae (Ascomycota: Sordariomycetes) against teak defoliator, Hyblaea puera (Lepidoptera: Hyblaeidae). About 300 soils and infected insect samples were collected during the survey and thirty-six fungal isolates were isolated from soil and insect samples and characterized. The fungi were cultured on PDAY with dodine and antibiotics. Generally, the EPF culture was incubated at 27 °C in darkness for 15 days. Virulence of the Entomopathogenic Fungi (EPF) ability to germinate under cold and heat temperatures was assessed in a culture impregnated with conidia. In the experiment, it was found that for the first time Metarhizium quizhouense, Metarhizium robertsii, and Metarhizium majus species caused significantly higher mortality to hosts. These isolates of M. anisopliae, M. robertsii, M. majus, and M. quizhouense were all considered to be effective virulent and environmentally adaptive. The Metarhizium isolates were recommended as effective bio-control agents through the field investigation of teak defoliator Hyblaea puera from South India forest. This study paves the way to utilize the indigenous isolates of EPF for the control of teak defoliator and to combat the pests thatare resistant to insecticide.

18.
Environ Sci Pollut Res Int ; 29(11): 15654-15663, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34636011

RESUMEN

Aegle marmelos (L.) Correa belongs to the family Rutaceae is generally known as "bael fruit tree" occuring across the south Asian countries. The current investigation screened the main derivatives from crude ethanolic extracts of the Bael tree leaf and evaluated activity effects on the larvae and adults of Aedes aegypti (L.) Dengue vector mosquito and a non-target aquatic predator. The GC-MS results showed that the peak area was found to be profound in N-methyl-1-adamantaneacetamide (N-M 1a) followed by oleic acid (OA) with 63.08 and 11.43% respectively. The larvicidal activity against the fourth instar larvae and the crude Ex-Am showed prominent mortality rate (93.60%) at the maximum dosage of 100 ppm. The mortality rate of N-M 1a and OA was occurred at 10 ppm (97.73%) and 12 ppm (95.4%). The repellent activity was found to be prominent at crude Ex-Am (50 ppm) as compared to the pure compounds (N-m 1a and OA) with maximum protection time up to 210 min. The non-target screening of Ex-Am, N-M 1a, and OA on mosquito predator Tx. splendens showed that they are scarcely toxic even at the maximum dosage of 1000 ppm (34.13%), 100 ppm (27.3%), and 120 ppm (31.3%) respectively. Thus, the present investigation clearly proved that the crude Ex-Am and their major derivatives Nm 1-a and OA showed their acute larval toxicity as well as potential mosquito repellent against the dengue mosquito and eco-safety against the mosquito predator.


Asunto(s)
Aedes , Aegle , Dengue , Repelentes de Insectos , Insecticidas , Amantadina , Animales , Contención de Riesgos Biológicos , Etanol , Larva , Mosquitos Vectores , Ácido Oléico , Extractos Vegetales , Hojas de la Planta , Árboles
19.
Front Physiol ; 12: 742871, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34867448

RESUMEN

The South American pinworm Tuta absoluta (Meyrick) (Family: Gelechiidae) is one of the most devastating lepidopteran pests in the developing countries of South America, Africa, and Asia. This pest is classified as the most serious threat for tomato production worldwide. In the present study, we analyzed RNAi-mediated control through exogenously applied dsRNA delivery on tomato. The dsRNA treatments were made to target the juvenile hormone binding protein and the v-ATPase B. Both mRNA targets were cloned, validated by sequencing, and used to produce each dsRNA. After treatments the relative transcript expression was analyzed using qRTPCR to assess to efficacy of RNAi. A leaf-dip assay was used to provide late 2nd instar larvae three feeding access periods: 24, 48, and 72 h, to evaluate the effect of gene silencing of each target. Larvae were fed tomato leaves coated with five different RNAi concentrations (10, 20, 30, 40, and 50 micrograms/centimeter-squared), that suppressed two genes (juvenile hormone protein, JHBP, and vacuolar-type adenosine triphosphatase enzyme, v-ATPase). Treatments with dsRNA showed a significant increase in mortality at 24, 48, and 72 h after ingestion (P < 0.01, α = 0.05), along with reduced leaf damage, and increased feeding deterrence. The results suggest that these two RNAi products may provide a suitable treatment for control of this and other lepidopteran pests.

20.
J Fungi (Basel) ; 7(11)2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34829251

RESUMEN

In 2016, infestation of an exotic polyphagous pest, the rugose spiraling whitefly (RSW), Aleurodicus rugioperculatus Martin (Hemiptera: Aleyrodidae), was documented on coconut for the first time in India. Instantaneously, RSW has garnered wide attention owing to its damage severity and rapid spread across the coconut-growing regions of the country. Hence, an attempt was made to devise a sustainable integrated pest management (IPM) module using biological control agents as a mainstay component. The present study documented the identification and characterization of a potential entomopathogenic fungal isolate for the management of RSW. An entomopathogenic fungus isolated from nymphal cadavers of RSW was identified as Simplicillium lanosoniveum based on morphological and phylogenetic analyses. A gradient of five conidial concentrations (1 × 104, 1 × 105, 1 × 106, 1 × 107 and 1 × 108 conidia/mL) of the S.lanosoniveum were tested against eggs, first instars, second to third instars and pupae of RSW. Results revealed that S.lanosoniveum is highly virulent to all developmental stages of RSW by causing mortality rates of 95.20%, 87.33%, 85.38% and 72.85%, in eggs, initial, middle and later instar nymphs of RSW, respectively, at the highest tested concentration (1 × 108 conidia/mL) at seven days after exposure. The LC50 and LT50 values of S.lanosoniveum were 4.72 × 104, 4.94 × 104, 5.11 × 105, 5.92 × 105 conidia/mL and 4.27, 4.86, 4.56, 5.89 days against eggs, initial, middle and later instar nymphs of RSW, respectively. Further, preliminary field trials with S.lanosoniveum strain at 1 × 108 conidia/mL exhibited a significant reduction in the egg and nymphal population by 57.8% and 56.3%, respectively. This report thus demonstrated that the newly isolated S.lanosoniveum is an effective pathogen at suppressing all the developmental stages of RSW. This is the first record of S.lanosoniveum infecting RSW, and it has a great potential to be developed as a mycoinsecticide.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...